การประยุกต์ใช้ปัญญาประดิษฐ์ในการวิจัย

ผู้แต่ง

  • รังสรรค์ โฉมยา มหาวิทยาลัยมหาสารคาม
  • สมบัติ ท้ายเรือคำ มหาวิทยาลัยเชียงใหม่
  • เสกสรร ทองคำบรรจง มหาวิทยาลัยบูรพา

คำสำคัญ:

วิธีวิทยาการวิจัย, การนำไปใช้, การตรวจสอบ, การวิจัยเชิงอนาคต

บทคัดย่อ

          บทความนี้มีจุดประสงค์เพื่อนำเสนอเรื่องราวของการประยุกต์ใช้ปัญญาประดิษฐ์ในการวิจัย โดยใช้วิธีการสังเคราะห์เอกสารและงานวิจัยต่าง ๆ โดยเนื้อหาของการนำเสนอโดยภาพรวม ได้แก่ แนวคิดเกี่ยวกับการประยุกต์ใช้ปัญญาประดิษฐ์ในการวิจัยได้เปลี่ยนแปลงวิธีการและกระบวนการในการศึกษาและการวิเคราะห์ข้อมูลอย่างมากในยุคดิจิทัลที่เทคโนโลยีมีการพัฒนาอย่างรวดเร็ว AI กลายเป็นเครื่องมือสำคัญที่ช่วยเพิ่มประสิทธิภาพในการวิจัย  ตั้งแต่การวิเคราะห์ข้อมูลขนาดใหญ่ การสร้างแบบจำลองและการทำให้กระบวนการต่าง ๆ เป็นไปโดยอัตโนมัติ เช่น การเรียนรู้ของเครื่อง (Machine Learning) การประมวลผลภาษาธรรมชาติ (Natural Language Processing) และเครือข่ายประสาทเทียม (Neural Networks) AI ยังช่วยในการสร้างความรู้ใหม่ ๆ และแก้ไขปัญหาที่ซับซ้อนได้ดีขึ้น อย่างไรก็ตามการนำ AI มาใช้ในงานวิจัยยังต้องเผชิญกับข้อท้าทายด้านจริยธรรมและความถูกต้องของข้อมูล เช่น ความเป็นส่วนตัวและความปลอดภัยของข้อมูล ความลำเอียงในข้อมูลและความโปร่งใสในการทำงานของอัลกอริทึม การจัดการกับความท้าทายเหล่านี้เป็นสิ่งสำคัญเพื่อให้การใช้ AI ในการวิจัยเป็นไปอย่างมีความรับผิดชอบและเป็นประโยชน์ต่อสังคม

เอกสารอ้างอิง

Agarwal, A., & Dhar, V. (2020). Big data, (AI), and economic opportunity: Implications for policy. Journal of Economic Perspectives, 34(4), 1–28.

Bail, C. A., Argyle, L. P., Brown, T. W., Bumpus, J. P., Chen, H., Hunzaker, M. F., Lee, J., Mann, M., Merhout, F., & Volfovsky, A. (2018). Exposure to opposing views on social media can increase political polarization. Proceedings of the National Academy of Sciences, 115(37), 9216–9221. https://doi.org/10.1073/pnas.1804840115

Baker, T., & Smith, L. (2019). Education rebooted? Exploring the future of artificial intelligence in schools and colleges. Nesta. https://www.nesta.org.uk/report/education-rebooted/

Binns, R. (2018). Fairness in machine learning: Mitigating bias in AI systems. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. https://dl.acm.org/doi/10.1145/3173574.3173795

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Blumenstock, J. E., Cadamuro, G., & On, R. (2015). Predicting poverty and wealth from mobile

phone metadata. Science, 350(6264), 1073–1076. https://doi.org/10.1126/science.aac4420

Broucke, S. V. D., Baesens, B., & Vanthienen, J. (2017). Automated business process discovery. In Business Process Management Workshops (pp. 407–419). Springer.

Bryant, R. E., Katz, R. H., & Lazowska, E. D. (2012). Big-data computing: Creating revolutionary breakthroughs in commerce, science, and society. Computing Community Consortium.

Bryman, A. (2012). Social research methods (4th ed.). Oxford University Press.

Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W. W. Norton & Company.

Bughin, J., Hazan, E., Ramaswamy, S., Chui, M., Allas, T., Dahlström, P., Henke, N., & Trench, M. (2017). Artificial intelligence: The next digital frontier?. McKinsey Global Institute.

Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19(2), 171–209. https://doi.org/10.1007/s11036-013-0489-0

Choi, E., Schuetz, A., Stewart, W. F., & Sun, J. (2020). Using machine learning and data mining to leverage electronic health record data. Journal of the American Medical Informatics Association, 28(2), 313–324. https://doi.org/10.1093/jamia/ocaa292

Cohen, I. G., Amarasingham, R., Shah, A., Xie, B., & Lo, B. (2019). The legal and ethical concerns that arise from using complex predictive analytics in health care. Health Affairs, 33(7), 1139–1147. https://doi.org/10.1377/hlthaff.2014.0048

Crawford, K. & Paglen, T. (2019). Atlas of AI: Power, politics, and the planetary costs of artificial intelligence. Yale University.

Dastin, J. (2019). Amazon scrapped a secret (AI) recruiting tool that showed bias against women. Reuters. https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G

Denscombe, M. (2010). The good research guide: For small-scale social research projects (4th ed.). Open University.

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. https://doi.org/10.1038/nature21056

Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., ... & Vayena, E. (2018). AI4People-An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds and Machines, 28(4), 689–707. https://doi.org/10.1007/s11023-018-9482-5

Gero, J. S. (2021). Artificial intelligence in design research: Research methodology. AI EDAM, 35(1), 5–19.

Gilbert, M. (2020). Social media analytics: A novel method for research in social sciences. International Journal of Social Research Methodology, 23(2), 123–138.

Gilbert, N., & Troitzsch, K. G. (2005). Simulation for the social scientist. Open University.

Gilbert, N., Ahrweiler, P., & Pyka, A. (2020). Innovation networks: Simulation and policy. Routledge.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

He, Y., & Zhang, X. (2020). Automated research processes: Trends and challenges in computational social science. Computational Social Networks, 7(1), 1–17.

Hofman, J. M., Sharma, A., Watts, D. J., & Goldstein, D. G. (2021). How you say it matters: Relational framing in communication about AI-based decisions. Nature Communications, 12(1), 1–12.

Hutson, M. (2017). AI researchers allege that machine learning is alchemy. Science, 360(6388), 478–479. https://doi.org/10.1126/science.360.6388.478

Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., & Wang, Y. (2021). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(3), 230–243.

Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389–399.

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/science.aaa8415

Jurafsky, D., & Martin, J. H. (2019). Speech and language processing (3rd ed. draft). Pearson.

Kitchin, R. (2014). The data revolution: Big data, open data, data infrastructures & their consequences. Sage.

Kitchin, R. (2022). The data revolution: A critical analysis of big data, open data and data infrastructures. Sage.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539

Makridakis, S. (2020). Forecasting, AI, and big data: Challenges and opportunities. Foresight: The International Journal of Applied Forecasting, 55, 36–42.

Manyika, J., Silberg, J., & Presten, D. (2019). What AI can and can’t do (yet) for your business. McKinsey Quarterly.

Mayer-Schönberger, V., & Cukier, K. (2013). Big data: A revolution that will transform how we live, work, and think. Houghton Mifflin Harcourt.

Menzies, T., & Zimmermann, T. (2020). Software analytics: So, what? IEEE Software, 37(1), 64–68.

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence, 267, 1–38.

Muller, M., Geyer, W., Soule, T., Daniels, S., & Cheng, L. P. (2021). AI ethics: Global perspectives, challenges, and opportunities. Journal of Artificial Intelligence Research, 70, 465–497. https://doi.org/10.1613/jair.1.12136

O'Neil, C. (2016). Weapons of math destruction: How big data increases inequality and threatens democracy. Crown Publishing Group.

Punch, K. F. (2013). Introduction to social research: Quantitative and qualitative approaches (3rd ed.). Sage.

Rajan, S., & Shanbhag, D. N. (2020). Artificial intelligence in scientific research: Applications, challenges, and ethics. Journal of Data Science and Analytics, 2(3), 123–134.

Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K., & Bengio, Y. (2019). Tackling climate change with machine learning. arXiv. https://arxiv.org/abs/1906.05433

Russell, S., & Norvig, P. (2021). Artificial intelligence: A modern approach (4th ed.). Pearson.

Sutherland, W. J., & Wood, A. (2017). The need for evidence-based policy in environmental management: A perspective from the social sciences. Journal of Environmental Management, 204, 232–237. https://doi.org/10.1016/j.jenvman.2017.05.037

Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial intelligence in human resources management: Challenges and a path forward. California Management Review, 61(4), 15–42. https://doi.org/10.1177/0008125619867910

Topol, E. (2019a). Deep medicine: How artificial intelligence can make healthcare human again. Basic Books.

Topol, E. J. (2019b). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7

Tsvetkova, M., Yasseri, T., Meyer, M., Pickering, J. B., Engen, V., Walland, P., & Tadic, B. (2017). Understanding human-machine networks: A cross-disciplinary survey. ACM Computing Surveys, 50(1), 1–35.

Witten, I. H., Frank, E., & Hall, M. A. (2017). Data mining: Practical machine learning tools and techniques (4th ed.). Morgan Kaufmann.

Wong, Z. S. Y., Zhou, J., & Zhang, Q. (2019). Artificial intelligence for infectious disease big data analytics and surveillance. Artificial Intelligence in Medicine, 100, 101–108. https://doi.org/10.1016/j.artmed.2019.01.003

Zhang, A., Lipton, Z. C., Li, M., & Smola, A. J. (2020). Dive into deep learning. arXiv. https://arxiv.org/abs/2001.04005

Zou, J., Huss, M., Abid, A., Mohammadi, P., Torkamani, A., & Telenti, A. (2019). A primer on deep learning in genomics. Nature Genetics, 51(1), 12–18. https://doi.org/10.1038/s41588-018-0295-5

Zuboff, S. (2019). The age of surveillance capitalism: The fight for a human future at the new frontier of power. PublicAffairs.

ดาวน์โหลด

เผยแพร่แล้ว

2025-01-30

ฉบับ

ประเภทบทความ

บทความวิชาการ